Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Analysis of Mass Transfer Rate in Droplet Flow at Microscopic Scales

S. Cito[1], T. Sikanen[1]
[1]Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland

Droplet flow at microscopic scale is often used to enhance many pharmaceuticals and industrial processes (i.e. liquid–liquid micro-extraction, nanoparticle synthesis, slow reactions in microfluidic devices, etc.). In all these processes, the mass transfer rate, at the interface between the droplets and the surrounding fluid of diluted reactants plays a key role. This work at analyzing ...

Numerical Analysis of the Self-Heating Behaviour of Coal Dust Accumulations

D.Wu[1], E. Van den Bulck[1]
[1]Katholieke Universiteit Leuven, Department of Mechanical Engineering, KU Leuven, Belgium

Introduction Self-heating behaviour of dust accumulations is a multiphysics field coupled heat and mass transfer in the porous media. A typical experimental apparatus with a hot storage oven and mesh wire baskets has been taken as the study object. The influence of gas flow velocity, oxygen concentration and ambient temperature on the self-heating behaviour of the dry coal dust sample has been ...

Modelling of the Oxygen Consumption of Cells in the Cell Culturing Platform

A. Niazi[1]
[1]School of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom

A device for monitoring the oxygen consumption of cells has been developed, which consists of two parts; a cell culturing platform (CCP) and an oxygen sensing chip. The CCP possesses inlet and outlet pipes to direct the fluid under the test to the cell culturing chamber through the inlet pipe and goes out of the outlet pipe after being partially consumed by the cells. In this abstract, the oxygen ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Cellular Convection in Vertical Annuli at roof slab of Fast Breeder Reactor

M. G. Hemanath[1], C. Meikandamurthy[1], G. Padmakumar[1], C. A. Babu[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

In the pool type Fast Breeder Reactors the roof structure is penetrated by a number of pumps and heat exchangers which are cylindrical in shape. Argon gas in reactor is sandwiched between the free surface of sodium and the roof structure and can flow in the annular space between the components and roof structure forming a thermosyphon. These hermosyphons not only transport heat from sodium to ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Modeling and Analysis of a Feedback-Controlled Active Magnetic Levitation System using COMSOL Multyphysics Finite Element Software

M. Nabi[1], and K. V. Ajeeth[1]
Department of Electrical Engineering, Indian Institute of Technology Delhi, India

Magnetic levitation systems have been studied in the context of high-speed transportation as maglev trains, high speed machinery as magnetic bearings, and other similar engineering applications. In this paper, a three dimensional arbitrary shaped object is modeled and analyzed through COMSOL. Mechanically the levitated object has three degrees of freedom- two along the x and y axes and the third ...

Benefits of COMSOL Multiphysics® Version 4

Ed Fontes
Chief Technology Officer, COMSOL

Ed Fontes is CTO at COMSOL with specific interest in the transport-reaction products. He has 14 years experience of modeling transport phenomena in industry and 6 years of supervising research projects in Academia. Ed Fontes received his PhD in Electrochemical Engineering from the Royal Institute of Technology (Stockholm, Sweden) in 1995.

Simulation of a Heated Tool System for Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1][2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the dynamic viscosity of the electrolyte by about 25 %. Both will improve the process. Therefore a Jet-ECM tool system ...

Numerical Study of an LTD Stirling Engine with Porous Regenerator

N. Martaj[1], P. Rochelle[1][2], L. Grosu[1], R. Bennacer[3], and S. Savarese[4]
[1]Universitè de Paris, Paris, France
[2]Institut Jean Le Rond d'Alembert, Université Paris 6
[3]Laboratoire LEEVAM «Environnement, Energétique, Valorisation, Matériaux», Universitéde Cergy-Pontoise
[4]COMSOL France, 5 pl. R Schuman, 38000 Grenoble

The alternative engines of Stirling type, are engines running on "hot air", using both an external heat source and regeneration. They should be considered as an alternative for the effective conversion of renewable energy sources into work, with their theoretical yield equal to the theoretical Carnot limit. The output efficiency and the power of these engines are strongly related to the ...

Quick Search

3221 - 3230 of 3645 First | < Previous | Next > | Last