Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Calculation of the Magnetic Field Intensity in a Rectangular Conductor Carrying Current in Electromagnetism Introductory Courses

J.C. Olivares-Galvan[1], I. Hernandez[2] , P.S. Georgilakis[3], and L.E. Campero[1]

[1]Universidad Autónoma Metropolitana, Azcapotzalco, Mexico, D.F.
[2]Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Guadalajara, Guadalajara, Jalisco, Mexico
[3]School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

This paper describes a type of didactic material used when teaching electromagnetism. The purpose is to guide the students to verify the results of a Finite Element (FE) simulation using those obtained analytically. This procedure has shown to be of great help during their learning of the FE method. The example in this paper uses a 2D analytical method to estimate the magnetic field generated by ...

Fast Computation of Capacitance Matrix and Potential Distribution for Multiconductor in Non-Homogenous Multilayered Dielectric Media

S.M. Musa[1], and M.N.O. Sadiku[1]

[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the fast computational and modeling of multiconductor transmission lines interconnect in non-homogenous multilayered dielectric media using the finite element method (FEM). We illustrate the potential distribution of the multiconductor transmission lines for the models and their solution time. We compared some of our results of computing the capacitance matrix with method of ...

Untersuchung der Polarisationseigenschaften einer mikrostrukturierten optischen Faser unter dem Einfluss äußerer Belastung

A. Unger[1], and K.H. Witte[2]
[1] FH-Wiesbaden, Fachbereich Physikalische Technik, Rüsselsheim;
[2] FH-Wiesbaden, Fachbereich Elektrotechnik, Rüsselsheim

Mit Hilfe des Softwareprogramms COMSOL zur Modellierung physikalischer Vorgänge wurden die Polarisationseigenschaften einer mikrostrukturierten Singlemodefaser untersucht. Ausgangspunkt der Simulationen waren experimentelle Untersuchungen, nach denen diese Faser eine ungewöhnlich starke Doppelbrechung aufwies. Die Doppelbrechung der Faser und damit ihre Fähigkeit zur Polarisationserhaltung ...

Thermo-fluid-dynamic evaluation of a microsystem to analyse radioactive solutions

G. Janssens-Maenhout
Joint Research Centre Ispra
Ispra, Italy

It has become common place to use micro-electromechanical systems (MEMS) to evaluate the chemical properties of solutions. However, such microchips have not yet been applied to the analysis of radioactive solutions, for the purpose of nuclear safeguards, in the nuclear reprocessing industry. Implementing MEMS in this area results in a reduced volume of the sample to be analysed. This has many ...

The pianistic touch: FEMLAB modeling of a grand piano action

Riccardo Ferrari
University of Trieste
Trieste, Italy

In this presentation we will show how to partially model a grand piano action. Then we will apply different touches to this virtual action and try to hear any difference. --------------------------------- Riccardo Ferrari was one of the keynote speakers at the COMSOL User's Conference, fall 2005 in Milano

Assessment of Hemodynamic Conditions in a-v Fistulas using CFD

A. K. Niemann1,5, S. A. Kock1, J. V. Nygaard2, E-T. Fründ3, S. E. Petersen4, and J. M. Hasenkam5
1 MR-center, Aarhus University Hospital Skejby, Aarhus, Denmark
2Interdisciplinary Nanoscience Center, Faculty of Science, University of Aarhus, Skejby, Denmark
3Dept. of Radiology, Aarhus University Hospital, "Aalborg Sygehus Syd", Aalborg, Denmark
4Dept. of Urology, Aarhus University Hospital Skejby, Aarhus, Denmark
5Dept. of Cardio-Thoracic and Vascular Surgery, and Clinical Institute, Aarhus University Hospital Skejby, Aarhus, Denmark

Using Computational Fluid Dynamics, different geometries of side-to-side a-v fistulas for hemodialysis access are evaluated. We created five CAD-models of fistulas with the length of the anastomosis varying from 5 to 15 mm. The five models were analyzed and evaluated using the k-ε turbulence application mode in COMSOL Multiphysics to determine if an optimal length of anastomosis exists. ...

Transport in reactive porous media containing biofilms

G. Debenest, Y. Aspa, and M. Quintard
IMFT, GEMP group, Toulouse, France

The objective of this presentation is the evaluation of effective bulk transport properties of reactive porous biofilm. We present our microscale model that accounts for both momentum and mass balances.

Benchmark between CPO (Charged Particle Optics) and COMSOL Multiphysics

J.-M. Barois, and C. Goulmy
PHOTONIS, Brive, France

Streak tubes are widely used in high-speed signal analysis; they give spatial, temporal and intensity information about one single event. Time resolutions of 0.7 pico-second can be achieved and in that time-domain, PHOTONIS tubes are second-to-none.Applications are numerous and range from plasma physic to femtosecond laser applications. In streak tubes, electrons move from the photocathode to the ...

Software Simulation of Electromagnetic Fields for Wood-Based Material Property Evaluation

X. Liu1, J. Zhang1, P. H. Steele1, and J. P. Donohoe2
1Dept. of Forest Products, Mississippi State University, MS, USA
2Dept. of Electrical & Computer Engineering, Mississippi State University, MS, USA

A technique based on the interaction of electromagnetic (EM) fields with the dielectric material is used for the non-destructive evaluation of wood-based material properties. An understanding of how the electromagnetic field is affected by the wood properties is necessary in order to optimize the system performance based on the frequency of the EM field. The COMSOL Multiphysics software package ...

Quick Search

2691 - 2700 of 3378 First | < Previous | Next > | Last