Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation Based Approach to Fluorescence Diffuse Optical Tomography

R. Singh, and I. Jose
BITS Pilani Goa Campus
Goa, India

Diffuse Optical Tomography (DOT) uses Near Infra-red (NIR) light to monitor physiological changes in internal organs. NIR light being less energetic in nature can be used for continuous monitoring of tumor infected biological tissue, neonatal brain and many such applications where high energy radiation can cause severe damage. The forward problem of DOT, which involves obtaining of the ...

Prediction of the Transmitted Light Through a Nano-Aperture of SNOM Probes

G. Louarn, S. Taleb, and S. Cuenot
Institut des Matériaux Jean Rouxel, Nantes

The knowledge of the light propagation through a nanometer-size aperture is crucial for Scanning Optical Near Field Microscopy (SNOM). In this work, we address a numerical study of the transmitted electric field through a SNOM probe. The influence of the wavelength is also studied. Our results show that the logarithmic power decreases linearly as a function of the aperture size, and the ...

Light Scattering Simulation of Nano-objects on the Surface of Silicon Wafers by 3D Finite Element Method

Y. Oshikane, T. Higashi, N. Taniguchi, M. Nakano, and H. Inoue
Dept. of Prec. Sci. and Technology
Grad. School of Eng.
Osaka University

Nanotechnology is rated as a key technology of the 21st century. In the field of nano-optics already at present, state-of-the-art scientific experiments and industrial applications exhibit nanometer to sub-nanometer design tolerances. This motivates the development and application of fast and accurate simulation tools for these fields or electromagnetic (EM) field.

Charge Carrier Motion in Semiconductors

B. Kreisler, G. Anton, J. Durst, and T. Michel
Physikalisches Institut Abt. IV, Erlangen

The motion of free charge carriers in semiconductors was simulated using the convection and diffusion module in COMSOL. The focus of this work is the sensor layer of the Medipix2 x-ray detector, in our case made of silicon. The charge cloud generated by photon interactions within the sensor material moves through the material due to an applied electric field. The charges are collected by the ...

Complex K-Bands Calculation for Plasmonic Crystal Slabs by Means of Weak Formulation of Helmholtz's Eigenvalue Equation

G. Parisi[1], P. Zilio[1], F. Romanato[1]
[1]University of Padova, Padova, Italy

We present a Finite Element Method (FEM) to calculate the complex valued k(?) dispersion curves of a photonic crystal slab in presence of both dispersive and lossy materials. In particular the method can be exploited to study plasmonic crystal slabs. We adopt Perfectly Matched Layers (PMLs) in order to truncate the open boundaries of the model, including their related anisotropic permittivity and ...

Thickness Designs for Micro-Thermoelectric Generators Using Three Dimensional PDE Coefficient-COMSOL Multiphysics 4.2a Analysis

S. Seif[1], K. Cadien[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

Predicting the optimum thickness and gap size between n-type and p-type legs of micro thermoelectric devices are the major challenges in designing micro thermo electric generators. We have reported the gap size and optimal thickness for optimal output power. We found that the gap size should be 0.1 microns; but, depending on fabrication capability, the gap size can be varied from 0.1 to 6 ...

Design for an Invisibility Cloak

T. Ochiai
Toyama Prefectural University

In order to design invisibility cloak, we use two different type of spaces: Physical space and Mathematical space. This paper is in Japanese.

Zero Dispersion Modeling in As2S3-Based Microstructured Fibers

P. Gagnon[1], H. Manouzi[1], M. El Amraoui[1], Y. Messaddeq[1]
[1]Laval University, Quebec City, QC, Canada

An important step in designing a microstructured optical fiber is the computation and management of its dispersion curve. It is well-known that computing chromatic dispersion can be done analytically for certain geometries (e.g. step-index fibers), but no such analytical methods is known in the realm of microstructured optical fibers. Figure 1, Figure 2, and Figure 3 illustrate cross-sections of ...

Multiphysic FEMLAB modelisation to evaluate mid-infrared photonic detector performances

Cuminal, Y.1, Christol, P.2, Rodriguez, J.B2, Joullié, A.2
1 Laboratoire des Sciences des Matériaux et d’Automatique (LASMEA), Université Clermont II, UMR CNRS 6602, Aubiére, France
2 Centre d’Electronique et de Micro-optoélectronique de Montpellier (CEM2), Université de Montpellier-II, UMR CNRS 5507, Montpellier, France

Infrared photonic detectors operating in the mid infrared region find applications in pollution monitoring, high-speed infrared imaging systems and free space telecommunications. There is a need for new uncooled high performance detector systems and antimonide-based (Sb-based) semiconductor quantum structures could be an alternative of the well-established technologies. The main objective of ...

The Optical Properties of a Truncated Spherical Cavity Embedded in Gold

A. Pors[1], O. Albrektsen[2], S.I. Bozhevolnyi[2], and M. Willatzen[1]
[1]Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
[2]Institute of Sensors, Signals and Electrotechnics, University of Southern Denmark, Odense, Denmark

The use of plasmonic effects to dramatically enhance the electromagnetic field near the surface of a metallic nanostructured surface has grown into a large research area in the effort to take advantage of the surface enhanced field. In this paper the electromagnetic field near a nano-sized truncated spherical cavity embedded in a gold substrate is investigated and modeled in 3D with COMSOL ...

Quick Search