Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain level. Many authors work with spheres (circles) to represent the grains but it is difficult to achieve an ...

Modeling the Heat Treatment of a Starch Suspension inside a Tubular Heat Exchanger

A. Plana-Fattori[1,2], E. Chantoiseau[1,2], C. Doursat[1,2], and D. Flick[1,2]
[1]AgroParisTech, Massy, France
[2]INRA, Massy, France

Many liquid food processes involve coupled phenomena of fluid flow, heat transfer and product transformation. A typical example is the heat treatment of a starch suspension inside a tubular heat exchanger. Fluid flow influences heat transfer which determines temperature evolution along fluid trajectories. Temperature locally influences the food product transformation. The latter influences ...

Numerical Study of the Effect of Fins on the Natural Convection Driven Melting of Phase Change Material

C. Liu, and D. Groulx
Mechanical Engineering
Dalhousie University
Halifax, NS

Natural convection has to be accounted and simulated for in order to properly describe the physics encounter in the phase change process. A simplified two-dimensional model was created in COMSOL 4.1. Natural convection was accounted for by adding a volume force and using the Boussinesq approach. The heat transfer and laminar flow physics were used. Results showed that natural convection played ...

Modeling a Cooling Skylight

M. Fält, and R. Zevenhoven
Thermal and Flow Engineering Laboratory, Department of Chemical Engineering
Åbo Akademi University

Air-conditioning produced by traditional vapor compression cycle is an energy demanding operation. By using passive cooling methods is it possible to avoid, or at least reduce, the need for vapor compression cooling. A passive radiative cooling method could be a three windowed skylight, filled with a greenhouse gas. Earlier modeling of such a skylight has shown promising results, and work has ...

Thermal and Fluid Dynamics Studies Applied to Steel Industry

G. Tracanelli[1], M. Culos[1]
[1]Studio di Ingegneria Industriale Tracanelli, San Vito al Tagliamento, Italy

The energy pay back is one of the most interesting field especially in the steel industry where this contribution is strictly connected to steams and emissions inside and outside the plant. Perhaps, this application is sometimes disturbed by a strong variation of emissions (\"off gas\"). One example is the arc furnace where the process is very discontinuous and there are many fluctuations in the ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...

Using COMSOL to Estimate the Heat Losses of Composite Panels Undergoing Repairs Using Bayesian Inference

A. Emery[1]
[1]University of Washington, Seattle, WA, USA

Composite repairs involve applying a prescribed heat flux which must be adjusted to account for heat losses. These losses must be estimated. Parameter estimation requires a knowledge of sensitivities. This is often done using finite differences. As shown in the figure, substantial errors often occur. The paper describes the use of the PDE features of COMSOL to obtain much more accurate values by ...

COMSOL Multiphysics® Based Identification of Thermal Properties of Mesoporous Silicon by Pulsed Photothermal Method

N. Semmar[1], I. El Abdouni[1], A. Melhem[1]
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France

The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization systems, and for micro-sensing devices. For thermal properties investigation many experimental systems were ...

Thermal Field in a NMR Cryostat

A. D'Orazio[1], C. Agostini[1], S. Fiacco[1]
[1]Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica - Sapienza University of Rome, Rome, Italy

Fundamental component of the NMR tomograph is the magnet. By using the property of superconductivity it is possible to achieve an induction field extremely homogeneous, stable and high. To maintain the material below the superconducting critical temperature (7.2K), the coils are immersed in liquid helium at 4K, within a cryostat. In this paper, we present the preliminary results related to the ...

Modelling of the Dynamical Fluorescent Micro-Thermal Imaging Experiment on the Heat Diffusion in the La5Ca9Cu24O41 Spin Ladder Compound

E. Khadikova[1], F. de Haan[1], P. H. M. van Loosdrecht[2]
[1]Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
[2]Department of Physics, University of Cologne, Köln, Germany

The dynamical fluorescent micro-thermal imaging (FMI) experiment has been used to investigate the phonon-magnon interaction in the 1D Heisenberg antiferromagnet La5Ca9Cu24O41. This material shows highly anisotropic heat conductivity due to the efficient magnetic heat transport along the spin ladders in the compound carried by magnetic excitations (magnons). To extract information on the ...

Quick Search