Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Model of a Magnet Driven Reed Switch

B. LaBarge[1], and E. Gutierrez-Miravete[2]

[1]Gems Sensors and Controls, Plainville, CT, USA
[2]Rensselaer at Hartford, Hartford, CT, USA

A simple proximity sensing circuit is made using magnets actuating reed switches; these switches are wired into a larger circuit that performs auxiliary functions. The success or failure of such systems is a function of their position. A simulation using COMSOL Multiphysics is conducted to study the position of a reed switch relative to a magnet when the switch opens and closes. Ability to ...

Simulation And Verification Of Thomson Actuator Systems

A. Bissal, G. Engdahl, E. Salinas, and M. Ohrstrom
ABB / KTH, Stockholm, Sweden

The Thomson coil’s (TC) inherent characteristics are appropriate to meet the needs of high speed actuators for mechanical switching devices in so-called smart grids. This is due to the massive forces that it can exert in the time scale of milliseconds. A coupled COMSOL Multiphysics model is developed in 2D involving spice circuits, Magneto-statics, and Moving Mesh Mode for predicting the motion ...

Optimizing Transducer Configuration of Capacitive Sensors for Agricultural Applications

N. Stroia[1], D. Moga[1], G. Mocanu[1], Z. Barabas[1], R. Moga [2]
[1]Technical University of Cluj-Napoca, Cluj-Napoca, Romania

This work aims to determine optimized configuration using COMSOL Multiphysics® for a class of transducers. Two types of capacitive sensors needed for monitoring and control in agriculture are investigated: a rain sensor and a soil humidity sensor. COMSOL Multiphysics® is used to test various configurations for both transducers, like the number of teeth in the comb, the depth of the teeth, the ...

Computational study of Solidification and Melting of Alloys

Shuang-Shii Lian
National Taiwan University

This paper is written in Chinese. --------------------------------- Keynote speaker's biography: Since 1991, Prof. Shuang-Shii Lian has been with the Department of Materials Science and Engineering, National Taiwan University. He earned a PhD degree in Metallurgy at Technische Universität Berlin, Institut für Metallurgie, Germany in 1981. He is using COMSOL Multiphysics since 2002 ...

Quasi-static Analysis on the Effect of Metal Penetrating Depth into the Substrate in Microstriplines

S. Musa, and M. Sadiku
Prairie View A&M University Networking Academy (PVNA), Prairie View, TX, USA

The effect of metallization thickness on planar transmission lines plays an essential role in microwave integrated circuits and thin film technology, especially in the propagation characterization and the electric field distribution in the structures. The objective of this paper is to consider the planar transmission lines with finite thickness not penetrating and penetrating into isotropic ...

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is suitable and effective as other methods for modeling of ...

Coupled Electromagnetic - Dynamic FEM Simulation of A High Frequency MEMS Energy Harvester

E. Topal
Middle East Technical University

In this study, a detailed finite element model coupling the motion dynamics and electromagnetics of a diaphragm based MEMS vibration energy harvester is presented. The energy harvester converts low frequency vibrations to high frequency response by magnetic actuation of a diaphragm carrying coils. AC/DC, Solid Mechanics and Moving Mesh (ALE) modules are coupled together in one 3-D model to ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil on magnetic energy density was described. In cause of magnetic anisotropy of analyzed silicon structure FEM method and couple field method was applied in simulation. The Lorentz force based sensors owing to their potentially simpler fabrication ...

Impedance measurements in reinforced concrete and 3D FEM simulations

Nogueira, A.1, Nóvoa, X.R.1, Keddam, M.2, Vivier, V.2
1 Universidade de Vigo (E.T.S.E.I.) Spain
2 UPR 15 CNRS “LISE”, case 133 - Université P. & M. Curie, Paris, France

The electrochemical impedance spectroscopy (EIS) measurements in reinforced concrete are reported and compared with 3D-finite element simulations with FEMLAB software. It was shown that the current injected in the cement past was partially collected by the reinforcement. Moreover, from both experimental results and calculations, it was shown that the fraction of current collected depends on the ...

MultiPhysics Simulation of Direct Double Helix Magnets for Charged Particle Applications

P. J. Masson[1], and R. B. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Charged particle beam manipulation requires magnetic dipoles for steering and quadrupoles for focusing. Conventional magnets are currently used leading to very large and heavy systems. Miniaturization of the optic magnets would enable the development of more affordable systems and potentially portable devices. The Advanced Magnet Lab, Inc. has developed a revolutionary magnet topology and ...

Quick Search