Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. Mainly the GFRC and CFRC laminates were selected in form either thin separate plate or sandwich structure. The ...

Thermal Simulations of a LED Light Using COMSOL Multiphysics

M. Maaspuro[1]
[1]University of Turku, Turku, FInland

An experimental LED light composed of a multi-chip LED-module, a LED driver and an efficient heat sink, was investigated using COMSOL Multiphysics software and the Heat Transfer Module. In an LED light heat is mainly generated in the LEDs but some amount of heat is generated also in the LED driver. The main target of the simulations was to resolve the junction temperatures of LEDs, the most ...

Simulation of Piezoelectric Transformers with COMSOL

T. Andersen[1], M. A. E. Andersen[1], O. C. Thomsen[1]
[1]DTU Elektro, Technical University of Denmark, Kgs. Lyngby, Denmark

In this work COMSOL is utilized to obtain the Mason lumped parameter model for a piezoelectric transformer (PT) design. The Mason lumped parameters are relevant in the design process of power converters. The magnitude of the impedance is simulated for a specific interleaved multilayer thickness mode PT. The PT design has been prototyped and the measurements results are compared with simulations. ...

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in Silico

P. Wallin[1], E. Bernson[1], J. Gold[1]
[1]Chalmers University of Technology, Applied Physics, Biological Physics, Gothenburg, Sweden

Cell migration of endothelial cells along gradients is an important process in vivo and an interesting target for cancer therapeutics. Microfluidics offer very powerful tools to study such migration processes in detail in the lab. In this study, we describe a model to simulate molecular gradients in a diffusion based microfluidic gradient generator and how a cell senses these gradients via cell ...

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

COMSOL Analysis of Acoustic Streaming and Microparticle Acoustophoresis

H. Bruus[1], P.B. Muller[1], R. Barnkob[1], M.J.H. Jensen[2]
[1]Technical University of Denmark, Kongens Lyngby, Denmark
[2]COMSOL, Kongens Lyngby, Denmark

We have simulated the ultrasound-induced acoustophoretic motion of microparticles suspended in an aqueous solution. The full first-order thermoviscous acoustics equations have been implented on a rectangular microfluidic 2D domain excited with an ultrasound field tuned to resonance near 2 MHz. The micrometer-thin but crucial viscous boundary layers at the rigid walls have been fully resolved. The ...

Electromagnetic Characterization of Big Aperture Magnet Used in Particle Beam Cancer Treatment

J. Osorio Moreno[1], M. Pullia[1], C. Priano[1]
[1]Fondazione CNAO, Pavia, Italy

Resistive magnets are one of the principal components of ion medical accelerator systems used in heavy ion cancer treatment. To fulfill medical requirements, like the size of irradiation field and an uniform dose distribution, some magnets of the transport beam line may require large aperture and a large region where the magnetic field is within specifications (good field region). After a ...

Solar Cell Cooling and Heat Recovery in a Concentrated Photovoltaic System

M. Cozzini[1]
[1]Fondazione Bruno Kessler (FBK), Renewable Energies and Environmental Technologies (REET) Unit, Trento, Italy

Concentrated photovoltaic systems with high efficiency solar cells are being widely investigated, aiming at improving the cost-efficiency balance in the solar energy field. Different cell types are in use: e.g., high concentration triple junction cells, reaching efficiencies of the order of 35 - 40 % at 1000 suns, and medium concentration mono-crystalline silicon cells, with efficiencies of the ...

Geometric Modeling and Numerical Simulation of Airfoil Shapes Using Integrated MATLAB® and COMSOL Multiphysics

A. Safari[1], H. Lemu G.[1], H. Severson[1]
[1]University of Stavanger, Stavanger, Norway

This paper proposes a framework for an efficient integration between geometric modeling program and analysis tool for a coming automated aerodynamic design optimization mission. This demand can be addressed by using both in-house codes and commercial software which have the good ability of live-link and efficient integration. In this study, the mathematical modeling of a turbomachinery airfoil ...

Multiphysics Between Deep Geothermal Water Cycle, Surface Heat Exchanger Cycle and Geothermal Power Plant Cycle

L.W. Wong[1]
[1]International Centre for Geothermal Research, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, Potsdam, Germany

Within the framework of Groß Schönebeck project in the North German Basin of Germany, multiphysics between deep geothermal reservoir, boreholes, heat exchangers and power plant is crucial to study lifecycle behavior of each component thereafter a later coupling to study lifecycle and recovery of the overall geothermal system. Study is divided into geothermal water cycle, surface heat exchanger ...

Quick Search

1 - 10 of 228 First | < Previous | Next > | Last