Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Kinetics and Plasma Modeling of Plasma Steam Reforming at Atmospheric Pressure

J.M. Cormier, F. Ouni, and A. Khacef
GREMI, Polytech’Orléans

Gliding discharges at atmospheric pressure were investigated in the GREMI laboratory for different applications such as syngas production from methane steam reforming. In our case, the kinetics could be described by using a simplified second order model in which the rate reaction coefficient is obtained from a linearization of parameters. Calculated and experimental data are presented ...

Implementation of a Multi-Axial Pseudoelastic Model to Predict the Dynamic Behavior of Shape Memory Alloys

F. Thiebaud, M. Collet, E. Foltête, and C. Lexcellent
Institut FEMTO-ST, Besancon

Shape Memory Alloys are good candidates for being used as passive dampers, strain sensors, stiffness or shape drivers. In order to develop the use of these alloys in structural vibration control, we present in this paper how to implement a phenomenological model based on the Rl model in COMSOL Multiphysics. We use this implementation to simulate internal loops in order to characterize the ...

Transport in Highly Heterogeneous Porous Media

G. Debenest, and M. Quintard
Institut de Mécanique des Fluides de Toulouse

Flows in highly heterogeneous media are found in many practical fields, such as hydrology, petroleum engineering, and chemical engineering. The case of two-region heterogeneous media (fractured media, catalytic beds, etc.) plays a fundamental role. The different questions associated to this specific case are illustrated in this paper for two different kinds of transport: (i) flow of a slightly ...

Low Frequency Electromagnetic Wave Propagation in Large Cavities, Study of the Cavity of Titan after the Cassini-Huygens Mission

F. Simões, and M. Hamelin
CETP/IPSL-CNRS 4, Saint Maur, France

The propagation of low frequency electromagnetic waves in the cavity of celestial bopdies with ionospheres has been studied, namely for inferring thunderstorm and lightning activity. The measurement of resonant states provides useful information for the analysis of the electric environment in the cavity. We present a 3D finite element model of the cavity, compute the lowest eigenfrequencies ...

Pedagogic use of COMSOL Multiphysics for Learning Numerical Methods and Numerical Modeling

J-M. Dedulle
L'ecole Nationale Supérieure de Physique de Grenoble

The students at ESPNG have, since 2002, been using COMSOL Multiphysics in order to master physical phenomena and the finite element method. We developed several projects based on the modeling of physics phenomena, and, in this paper, we present projects based on Physical Vapor Transport and Magnetic Levitation. --------------------------------- Keynote speaker's biography: Jean-Marc ...

Boundary Conditions Identification for Thermostatic Cauchy Problem by Minimizing an Energy-like Function

T.N. Baranger
LDMS, UMR CNRS-INSA 5006, ISTIL - Université Claude Bernard, Lyon

An energy-like error function is introduced in the context of the ill-posed problem of boundary data recovering, which is commopnly known as a Cauchy problem. Here the problem is converted into an optimization problem. Numerical simulations highlight the efficiency and robustness of the proposed method.

Numerical Simulations of Thixotropic Fluids

P. Dantan[1], and M. Faye[2]
[1] Université Paris7 Denis Diderot
[2] Université Paris11

In this paper, we introduce a kinetic equation coupled with the Navier-Stokes equations in COMSOL Multiphysics in order to simulate internal structural changes of a flowing complex fluid. Two physical applications are considered, the starting of blood flow in a stenosis and a simulation of a laboratory rheometric set-up. Results show good agreement with the experiments' well known ...

Compressional Waves Generation in Droplets of Water Deposited on a Quartz Crystal

G. Couturier, R. Boisgard, C. Jai, and J.P. Aimé
Université Bordeaux

In this paper, we investigate the compressional wave generation in droplets and use different techniques to correlate the compressional wave generation to the shape of the droplets. Results show a good correlation between eigenmodes predicted by the theory and those experimentally observed.

Analysis of Electrical Phenomena Occurring in Thermally Assisted Mechanical Dewatering Processes

A. Mahmoud, A. Fernandez, and P. Arlabosse
Ecole des Mines d’Albi Carmaux, Albi

The so-called opposite electrode pair measurement strategy is adapted in a filtration/expression cell filled with a model material packed bed. In this paper, we investigate the electrical properties of a packed bed, with particular emphasis on its overall conductivity. As a special case study we treat potassium chloride solutions, using model materials of different particle sizes.

Multiphysics Simulations of Tunneling Current Modulation using Ultra-Thin Membranes Micromachined on SOI

B. Bercu, L. Montès, G. Bacles, J. Zimmermann, and P. Morfouli
Institute of Microelectronics, Electromagnetism and Photonics, Grenoble

In this paper, we study a novel type of NEMS - tunnel junctions mounted on thin membranes. Mechanical stress applied to the junction induces changes in the height and length of the barrier, allowing the modulation of the tunnelling current.

Quick Search