Heat Transfer

Alexandra Foley | July 11, 2014

There are many factors that go into designing the ideal oven — supreme cooking capability is a must, but energy efficiency and the use of materials with reduced environmental impact is also important. How can all of these different factors be combined to create an oven that is optimized for the best performance? Engineers working at Whirlpool Corporation along with the European green energy initiative, GREENKITCHEN project, found that multiphysics simulation was vital to the success of their design process.

Read more ⇢
Laura Bowen | June 24, 2014

The Passive Vaccine Storage Device (PVSD) is a highly advanced container that combines ingenuity and insulation technology to empower aid workers delivering vaccines to the toughest-to-reach corners of the globe. Designed as a prototype that improves upon earlier models of vaccine transportation devices, this compact apparatus was developed with all the necessary steps: careful planning, simulation, and testing.

Read more ⇢
Fabian Scheuren | June 23, 2014

One of the main issues with high-power electrical devices is thermal management. Together with BLOCK Transformatoren, we created a model using COMSOL Multiphysics simulation software that encompasses all of the important details when modeling heating of high-power electrical devices. To do so, we had to utilize high performance computing (HPC) with hybrid modeling. Here, we will discuss how to approach this real-life task with the COMSOL software.

Read more ⇢
Peng-Chhay Ung | May 28, 2014

In a previous blog post, we presented the applications of conjugate heat transfer involving immobile solids. The case of immobile solids simplifies the heat equation to be solved and is often a good approximation to the temperature field. Today, we will complete the description of the physics that account for thermoelastic effects of the material when heat transfer and solid mechanics are coupled.

Read more ⇢
Alexandra Foley | May 27, 2014

High temperatures can be used to destroy tumor cells, a cancer treatment known as hyperthermic oncology. Although the idea behind this treatment method has been around for some time, it wasn’t until recently that new tools and more precise delivery of heat has allowed hyperthermia to be used for cancer treatment. As hyperthermic oncology studies continue, simulation has proven a valuable tool for achieving a deeper understanding of how to deliver heat to tumors while limiting damage to healthy tissue.

Read more ⇢

Article Categories

Nancy Bannach | March 11, 2014

A lot of materials have anisotropic properties and, in many cases, the anisotropy follows the shape of the material. COMSOL Multiphysics offers different methods for defining curvilinear coordinate systems. Here, we discuss the concepts of each and when to use which method.

Read more ⇢

Article Categories

Mads Herring Jensen | February 28, 2014

Previously, we introduced the theory behind thermoacoustics. Here, I will go deeper into modeling acoustics with the Thermoacoustic interface in COMSOL Multiphysics and show you some tips and tricks on how to do this.

Read more ⇢
Ahsan Munir | February 26, 2014

DNA is a complex molecule that contains instructions for life and often referred to as a “digital fingerprint” or code telling a cell what to do. DNA is often the only means for accurate testing and identification of biomolecules, cells, or even an entire person during forensic investigations. The need to be able to test for DNA, as quickly as possible, and even at the site where the sample is taken, is becoming more and more important.

Read more ⇢
Walter Frei | February 11, 2014

When solving a thermal processing problem, such as the heating or cooling of a part, it is desirable to change the heating, or cooling, based upon the computed solution. That is, we may want to include a feedback loop into our model. In this article, we will set up a feedback loop using a component coupling to turn a heat load on or off depending upon the temperature of the part being heated.

Read more ⇢

Article Categories

Lexi Carver | February 4, 2014

Keeping the inside of a building at a comfortable temperature requires well-designed windows to keep heat out during the summer and heat in during the winter. Let’s take a look at how windows provide thermal insulation and how they carry heat (or not) between the inside of a building and the outdoors.

Read more ⇢

Article Categories

Alexandra Foley | January 15, 2014

With shrinking electronic devices and ever-increasing power densities, efficient thermal management is at the heart of many R&D activities for electronics engineers. When developing complete systems containing multiple components, designs can become rather complex. An example of such a design would be a computer power supply unit (PSU), which can include not only electronics, but also multiple heat sinks, cooling fans, perforated grilles, and other large components — all within a small enclosure. In this blog post, we will explore […]

Read more ⇢

Article Categories

1 2 3 5